Publications
Marc Schmitt, PhD
Abstract: Our fast-paced digital economy shaped by global competition requires increased data-driven decision-making based on artificial intelligence (AI) and machine learning (ML). The benefits of deep learning (DL) are manifold, but it comes with limitations that have – so far – interfered with widespread industry adoption. This paper explains why DL – despite its popularity – has difficulties speeding up its adoption within business analytics. It is shown that the adoption of deep learning is not only affected by computational complexity, lacking big data architecture, lack of transparency (black-box), skill shortage, and leadership commitment, but also by the fact that DL does not outperform traditional ML models in the case of structured datasets with fixed-length feature vectors. Deep learning should be regarded as a powerful addition to the existing body of ML models instead of a “one size fits all” solution. The results strongly suggest that gradient boosting can be seen as the go-to model for predictions on structured datasets within business analytics. In addition to the empirical study based on three industry use cases, the paper offers a comprehensive discussion of those results, practical implications, and a roadmap for future research.
Keywords: Deep Learning, Machine learning, Business analytics, Artificial intelligence, Data-driven decision making, Digital transformation, Digital strategy
Marc Schmitt, PhD
Abstract: The realization that AI-driven decision-making is indispensable in today’s fast-paced and ultra-competitive marketplace has raised interest in industrial machine learning (ML) applications significantly. The current demand for analytics experts vastly exceeds the supply. One solution to this problem is to increase the user-friendliness of ML frameworks to make them more accessible for the non-expert. Automated machine learning (AutoML) is an attempt to solve the problem of expertise by providing fully automated off-the-shelf solutions for model choice and hyperparameter tuning. This paper analyzed the potential of AutoML for applications within business analytics, which could help to increase the adoption rate of ML across all industries. The H2O AutoML framework was benchmarked against a manually tuned stacked ML model on three real-world datasets. The manually tuned ML model could reach a performance advantage in all three case studies used in the experiment. Nevertheless, the H2O AutoML package proved to be quite potent. It is fast, easy to use, and delivers reliable results, which come close to a professionally tuned ML model. The H2O AutoML framework in its current capacity is a valuable tool to support fast prototyping with the potential to shorten development and deployment cycles. It can also bridge the existing gap between supply and demand for ML experts and is a big step towards automated decisions in business analytics. Finally, AutoML has the potential to foster human empowerment in a world that is rapidly becoming more automated and digital.
Keywords: Artificial intelligence, Machine learning, AutoML, Business analytics, Data-driven decision making, Digital transformation, Human empowerment
Marc Schmitt, PhD
Abstract: The last decades have been characterized by unprecedented technological advances, many of them powered by modern technologies such as Artificial Intelligence (AI) and Machine Learning (ML). The world has become more digitally connected than ever, but we face major challenges. One of the most significant is cybercrime, which has emerged as a global threat to governments, businesses, and civil societies. The pervasiveness of digital technologies combined with a constantly shifting technological foundation has created a complex and powerful playground for cybercriminals, which triggered a surge in demand for intelligent threat detection systems based on machine and deep learning. This paper investigates AI-based cyber threat detection to protect our modern digital ecosystems. The primary focus is on evaluating ML-based classifiers and ensembles for anomaly-based malware detection and network intrusion detection and how to integrate those models in the context of network security, mobile security, and IoT security. The discussion highlights the challenges when deploying and integrating AI-enabled cybersecurity solutions into existing enterprise systems and IT infrastructures, including options to overcome those challenges. Finally, the paper provides future research directions to further increase the security and resilience of our modern digital industries, infrastructures, and ecosystems.
Keywords: Cybersecurity, Machine learning, Digital ecosystems, Internet of things, Cyber-physical systems, Industry 5.0